Black hole Meissner effect and entanglement

Extremal black holes tend to expel magnetic and electric fields. Fields are unable to reach the horizon because the length of the black hole throat blows up in the extremal limit. The length of the throat is related to the amount of entanglement between modes on either side of the horizon. So it is...

Full description

Bibliographic Details
Main Author: Penna, Robert (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor), MIT Kavli Institute for Astrophysics and Space Research (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2014-08-11T17:24:35Z.
Subjects:
Online Access:Get fulltext
LEADER 01320 am a22001933u 4500
001 88671
042 |a dc 
100 1 0 |a Penna, Robert  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a MIT Kavli Institute for Astrophysics and Space Research  |e contributor 
100 1 0 |a Penna, Robert  |e contributor 
245 0 0 |a Black hole Meissner effect and entanglement 
260 |b American Physical Society,   |c 2014-08-11T17:24:35Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/88671 
520 |a Extremal black holes tend to expel magnetic and electric fields. Fields are unable to reach the horizon because the length of the black hole throat blows up in the extremal limit. The length of the throat is related to the amount of entanglement between modes on either side of the horizon. So it is natural to try to relate the black hole Meissner effect to entanglement. We derive the black hole Meissner effect directly from the low temperature limit of two-point functions in the Hartle-Hawking vacuum. Then we discuss several new examples of the black hole Meissner effect, its applications to astrophysics, and its relationship to gauge invariance. 
520 |a MIT Department of Physics Pappalardo Program 
546 |a en 
655 7 |a Article 
773 |t Physical Review D