Solving the corner-turning problem for large interferometers

The so-called corner-turning problem is a major bottleneck for radio telescopes with large numbers of antennas. The problem is essentially that of rapidly transposing a matrix that is too large to store on one single device; in radio interferometry, it occurs because data from each antenna need to b...

Full description

Bibliographic Details
Main Authors: Lutomirski, Andrew Michael (Contributor), Tegmark, Max Erik (Contributor), Sanchez, Nevada J. (Contributor), Stein, Leo C. (Contributor), Urry, W. Lynn (Author), Zaldarriaga, Matias (Author)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Oxford University Press on behalf of The Royal Astronomical Society, 2014-08-07T13:47:14Z.
Subjects:
Online Access:Get fulltext
LEADER 02611 am a22003733u 4500
001 88569
042 |a dc 
100 1 0 |a Lutomirski, Andrew Michael  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Lutomirski, Andrew Michael  |e contributor 
100 1 0 |a Tegmark, Max Erik  |e contributor 
100 1 0 |a Sanchez, Nevada J.  |e contributor 
100 1 0 |a Stein, Leo C.  |e contributor 
700 1 0 |a Tegmark, Max Erik  |e author 
700 1 0 |a Sanchez, Nevada J.  |e author 
700 1 0 |a Stein, Leo C.  |e author 
700 1 0 |a Urry, W. Lynn  |e author 
700 1 0 |a Zaldarriaga, Matias  |e author 
245 0 0 |a Solving the corner-turning problem for large interferometers 
260 |b Oxford University Press on behalf of The Royal Astronomical Society,   |c 2014-08-07T13:47:14Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/88569 
520 |a The so-called corner-turning problem is a major bottleneck for radio telescopes with large numbers of antennas. The problem is essentially that of rapidly transposing a matrix that is too large to store on one single device; in radio interferometry, it occurs because data from each antenna need to be routed to an array of processors each of which will handle a limited portion of the data (say, a frequency range) but requires input from each antenna. We present a low-cost solution allowing the correlator to transpose its data in real time, without contending for bandwidth, via a butterfly network requiring neither additional RAM memory nor expensive general-purpose switching hardware. We discuss possible implementations of this using FPGA, CMOS, analog logic and optical technology, and conclude that the corner-turner cost can be small even for upcoming massive radio arrays. 
520 |a David & Lucile Packard Foundation 
520 |a United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship) 
520 |a National Science Foundation (U.S.) (NSF Grant No. AST-0607597) 
520 |a National Science Foundation (U.S.) (Grant No. AST-0708534) 
520 |a National Science Foundation (U.S.) (Grant No. AST- 0907969) 
520 |a National Science Foundation (U.S.) (Grant No. AST-0908848) 
520 |a National Science Foundation (U.S.) (Grant No. PHY-0855425) 
520 |a United States. National Aeronautics and Space Administration (NASA grant NAG5-11099) 
520 |a United States. National Aeronautics and Space Administration (NASA grant NNG 05G40G) 
546 |a en_US 
655 7 |a Article 
773 |t Monthly Notices of the Royal Astronomical Society