Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages

For a parameterized hyperbolic system $u_{i+1} = f(u_i,s)$, the derivative of an ergodic average $\langle J\rangle = \lim_{n\rightarrow\infty} \frac1n \sum_1^n J(u_i,s)$ to the parameter $s$ can be computed via the least squares shadowing method. This method solves a constrained least squares proble...

Full description

Bibliographic Details
Main Author: Wang, Qiqi (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor)
Format: Article
Language:English
Published: Society for Industrial and Applied Mathematics, 2014-07-01T19:48:22Z.
Subjects:
Online Access:Get fulltext
LEADER 01361 am a22001933u 4500
001 88173
042 |a dc 
100 1 0 |a Wang, Qiqi  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Aeronautics and Astronautics  |e contributor 
100 1 0 |a Wang, Qiqi  |e contributor 
245 0 0 |a Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages 
260 |b Society for Industrial and Applied Mathematics,   |c 2014-07-01T19:48:22Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/88173 
520 |a For a parameterized hyperbolic system $u_{i+1} = f(u_i,s)$, the derivative of an ergodic average $\langle J\rangle = \lim_{n\rightarrow\infty} \frac1n \sum_1^n J(u_i,s)$ to the parameter $s$ can be computed via the least squares shadowing method. This method solves a constrained least squares problem and computes an approximation to the desired derivative $\frac{d\langle J\rangle}{ds}$ from the solution. This paper proves that as the size of the least squares problem approaches infinity, the computed approximation converges to the true derivative. 
520 |a United States. Air Force Office of Scientific Research (STTR contract FA9550-12-C-0065) 
520 |a United States. National Aeronautics and Space Administration 
546 |a en_US 
655 7 |a Article 
773 |t SIAM Journal on Numerical Analysis