Max flows in O(nm) time, or better

In this paper, we present improved polynomial time algorithms for the max flow problem defined on sparse networks with n nodes and m arcs. We show how to solve the max flow problem in O(nm + m[superscript 31/16] log[superscript 2] n) time. In the case that m = O(n[superscript 1.06]), this improves u...

Full description

Bibliographic Details
Main Author: Orlin, James B. (Contributor)
Other Authors: Massachusetts Institute of Technology. Operations Research Center (Contributor), Sloan School of Management (Contributor)
Format: Article
Language:English
Published: Association for Computing Machinery, 2014-06-17T18:34:02Z.
Subjects:
Online Access:Get fulltext
LEADER 01338 am a22001933u 4500
001 88020
042 |a dc 
100 1 0 |a Orlin, James B.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Operations Research Center  |e contributor 
100 1 0 |a Sloan School of Management  |e contributor 
100 1 0 |a Orlin, James B.  |e contributor 
245 0 0 |a Max flows in O(nm) time, or better 
260 |b Association for Computing Machinery,   |c 2014-06-17T18:34:02Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/88020 
520 |a In this paper, we present improved polynomial time algorithms for the max flow problem defined on sparse networks with n nodes and m arcs. We show how to solve the max flow problem in O(nm + m[superscript 31/16] log[superscript 2] n) time. In the case that m = O(n[superscript 1.06]), this improves upon the best previous algorithm due to King, Rao, and Tarjan, who solved the max flow problem in O(nm logm/(n log n)n) time. This establishes that the max flow problem is solvable in O(nm) time for all values of n and m. In the case that m = O(n), we improve the running time to O(n[superscript 2]/ log n). 
520 |a United States. Office of Naval Research (ONR grant N000141110056) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 45th annual ACM Symposium on theory of computing - STOC '13