|
|
|
|
LEADER |
03227 am a22002773u 4500 |
001 |
88008 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Van Damme, M.
|e author
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
|e contributor
|
100 |
1 |
0 |
|a Heald, Colette L.
|e contributor
|
700 |
1 |
0 |
|a Clarisse, L.
|e author
|
700 |
1 |
0 |
|a Hurtmans, D. R.
|e author
|
700 |
1 |
0 |
|a Ngadi, Y.
|e author
|
700 |
1 |
0 |
|a Clerbaux, C.
|e author
|
700 |
1 |
0 |
|a Dolman, A. J.
|e author
|
700 |
1 |
0 |
|a Erisman, J. W.
|e author
|
700 |
1 |
0 |
|a Coheur, P. -F.
|e author
|
700 |
1 |
0 |
|a Heald, Colette L.
|e author
|
245 |
0 |
0 |
|a Global distributions, time series and error characterization of atmospheric ammonia (NH[subscript 3]) from IASI satellite observations
|
260 |
|
|
|b Copernicus GmbH,
|c 2014-06-16T18:52:14Z.
|
856 |
|
|
|z Get fulltext
|u http://hdl.handle.net/1721.1/88008
|
520 |
|
|
|a Ammonia (NH[subscript 3]) emissions in the atmosphere have increased substantially over the past decades, largely because of intensive livestock production and use of fertilizers. As a short-lived species, NH[subscript 3] is highly variable in the atmosphere and its concentration is generally small, except near local sources. While ground-based measurements are possible, they are challenging and sparse. Advanced infrared sounders in orbit have recently demonstrated their capability to measure NH[subscript 3], offering a new tool to refine global and regional budgets. In this paper we describe an improved retrieval scheme of NH[subscript 3] total columns from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). It exploits the hyperspectral character of this instrument by using an extended spectral range (800-1200 cm[superscript −1]) where NH[subscript 3] is optically active. This scheme consists of the calculation of a dimensionless spectral index from the IASI level1C radiances, which is subsequently converted to a total NH[subscript 3] column using look-up tables built from forward radiative transfer model simulations. We show how to retrieve the NH[subscript 3] total columns from IASI quasi-globally and twice daily above both land and sea without large computational resources and with an improved detection limit. The retrieval also includes error characterization of the retrieved columns. Five years of IASI measurements (1 November 2007 to 31 October 2012) have been processed to acquire the first global and multiple-year data set of NH[subscript 3] total columns, which are evaluated and compared to similar products from other retrieval methods. Spatial distributions from the five years data set are provided and analyzed at global and regional scales. In particular, we show the ability of this method to identify smaller emission sources than those previously reported, as well as transport patterns over the ocean. The five-year time series is further examined in terms of seasonality and interannual variability (in particular as a function of fire activity) separately for the Northern and Southern Hemispheres.
|
520 |
|
|
|a United States. National Oceanic and Atmospheric Administration (NA12OAR4310064)
|
546 |
|
|
|a en_US
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t Atmospheric Chemistry and Physics
|