Proposal for real-time terahertz imaging system with palm-size terahertz camera and compact quantum cascade laser

This paper describes a real-time terahertz (THz) imaging system, using the combination of a palm-size THz camera with a compact quantum cascade laser (QCL). The THz camera contains a 320x240 microbolometer focal plane array which has nearly flat spectral response over a frequency range of ca. 1.5 to...

Full description

Bibliographic Details
Main Authors: Oda, Naoki (Author), Lee, Alan (Author), Ishi, Tsutomu (Author), Hosako, Iwao (Author), Hu, Qing (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: SPIE, 2014-05-22T18:00:08Z.
Subjects:
Online Access:Get fulltext
LEADER 01569 am a22002293u 4500
001 87101
042 |a dc 
100 1 0 |a Oda, Naoki  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Hu, Qing  |e contributor 
700 1 0 |a Lee, Alan  |e author 
700 1 0 |a Ishi, Tsutomu  |e author 
700 1 0 |a Hosako, Iwao  |e author 
700 1 0 |a Hu, Qing  |e author 
245 0 0 |a Proposal for real-time terahertz imaging system with palm-size terahertz camera and compact quantum cascade laser 
260 |b SPIE,   |c 2014-05-22T18:00:08Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/87101 
520 |a This paper describes a real-time terahertz (THz) imaging system, using the combination of a palm-size THz camera with a compact quantum cascade laser (QCL). The THz camera contains a 320x240 microbolometer focal plane array which has nearly flat spectral response over a frequency range of ca. 1.5 to 100 THz, and operates at 30 Hz frame rate. The QCL is installed in compact cryogen-free cooler. A variety of QCLs are prepared which can cover frequency range from ca. 1.5 to 5 THz. THz images of biochemical samples will be presented, using the combined imaging system. Performance of the imaging system, such as signal-to-noise ratio of transmission-type THz microscope, is predicted. 
520 |a National Institute of Information and Communications Technology (Japan) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of SPIE--the International Society for Optical Engineering