Synthesizing Iterators from Abstraction Functions

A technique for synthesizing iterators from declarative abstraction functions written in a relational logic specification language is described. The logic includes a transitive closure operator that makes it convenient for expressing reachability queries on linked data structures. Some optimizations...

Full description

Bibliographic Details
Main Authors: Rayside, Derek (Author), Motaghami, Vajihollah (Author), Leung, Francesca (Author), Yuen, Albert (Author), Xu, Kevin (Author), Jackson, Daniel (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Association for Computing Machinery (ACM), 2014-05-19T19:56:13Z.
Subjects:
Online Access:Get fulltext
Description
Summary:A technique for synthesizing iterators from declarative abstraction functions written in a relational logic specification language is described. The logic includes a transitive closure operator that makes it convenient for expressing reachability queries on linked data structures. Some optimizations, including tuple elimination, iterator flattening, and traversal state reduction, are used to improve performance of the generated iterators. A case study demonstrates that most of the iterators in the widely used JDK Collections classes can be replaced with code synthesized from declarative abstraction functions. These synthesized iterators perform competitively with the hand-written originals. In a user study the synthesized iterators always passed more test cases than the hand-written ones, were almost always as efficient, usually took less programmer effort, and were the qualitative preference of all participants who provided free-form comments.