Euclidean Spanners in High Dimensions

A classical result in metric geometry asserts that any n-point metric admits a linear-size spanner of dilation O(log n) [PS89]. More generally, for any c > 1, any metric space admits a spanner of size O(n[superscript 1+1/c]), and dilation at most c. This bound is tight assuming the well-known gir...

Full description

Bibliographic Details
Main Authors: Har-Peled, Sariel (Author), Indyk, Piotr (Contributor), Sidiropoulos, Anastasios (Author)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Society for Industrial and Applied Mathematics, 2014-05-15T17:22:50Z.
Subjects:
Online Access:Get fulltext
LEADER 01878 am a22002293u 4500
001 87001
042 |a dc 
100 1 0 |a Har-Peled, Sariel  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Indyk, Piotr  |e contributor 
700 1 0 |a Indyk, Piotr  |e author 
700 1 0 |a Sidiropoulos, Anastasios  |e author 
245 0 0 |a Euclidean Spanners in High Dimensions 
260 |b Society for Industrial and Applied Mathematics,   |c 2014-05-15T17:22:50Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/87001 
520 |a A classical result in metric geometry asserts that any n-point metric admits a linear-size spanner of dilation O(log n) [PS89]. More generally, for any c > 1, any metric space admits a spanner of size O(n[superscript 1+1/c]), and dilation at most c. This bound is tight assuming the well-known girth conjecture of Erdős [Erd63]. We show that for a metric induced by a set of n points in high-dimensional Euclidean space, it is possible to obtain improved dilation/size trade-offs. More specifically, we show that any n-point Euclidean metric admits a near-linear size spanner of dilation O(√log n). Using the LSH scheme of Andoni and Indyk [AI06] we further show that for any c > 1, there exist spanners of size roughly O(n[superscript1+1/c[superscript 2]]) and dilation O(c). Finally, we also exhibit super-linear lower bounds on the size of spanners with constant dilation. 
520 |a National Science Foundation (U.S.) (AF Award CCF-0915984) 
520 |a National Science Foundation (U.S.) (AF Award CCF-1217462) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms