A generalized software framework for accurate and efficient management of performance goals
A number of techniques have been proposed to provide runtime performance guarantees while minimizing power consumption. One drawback of existing approaches is that they work only on a fixed set of components (or actuators) that must be specified at design time. If new components become available, th...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE),
2014-03-21T14:55:53Z.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | A number of techniques have been proposed to provide runtime performance guarantees while minimizing power consumption. One drawback of existing approaches is that they work only on a fixed set of components (or actuators) that must be specified at design time. If new components become available, these management systems must be redesigned and reimplemented. In this paper, we propose PTRADE, a novel performance management framework that is general with respect to the components it manages. PTRADE can be deployed to work on a new system with different components without redesign and reimplementation. PTRADE's generality is demonstrated through the management of performance goals for a variety of benchmarks on two different Linux/x86 systems and a simulated 128-core system, each with different components governing power and performance tradeoffs. Our experimental results show that PTRADE provides generality while meeting performance goals with low error and close to optimal power consumption. United States. Defense Advanced Research Projects Agency. The Ubiquitous High Performance Computing Program |
---|