Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

Author manuscript September 28, 2012

Bibliographic Details
Main Authors: Meng, Jianping (Author), Zhang, Yonghao (Author), Radtke, Gregg A. (Contributor), Shan, Xiaowen (Author), Hadjiconstantinou, Nicolas (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Cambridge University Press, 2014-03-10T17:11:46Z.
Subjects:
Online Access:Get fulltext
LEADER 02129 am a22002413u 4500
001 85579
042 |a dc 
100 1 0 |a Meng, Jianping  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Hadjiconstantinou, Nicolas  |e contributor 
100 1 0 |a Radtke, Gregg A.  |e contributor 
700 1 0 |a Zhang, Yonghao  |e author 
700 1 0 |a Radtke, Gregg A.  |e author 
700 1 0 |a Shan, Xiaowen  |e author 
700 1 0 |a Hadjiconstantinou, Nicolas  |e author 
245 0 0 |a Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows 
260 |b Cambridge University Press,   |c 2014-03-10T17:11:46Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/85579 
520 |a Author manuscript September 28, 2012 
520 |a A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small-Mach-number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0.5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased. 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Fluid Mechanics