On the Power of (even a little) Centralization in Distributed Processing

We propose and analyze a multi-server model that captures a performance trade-off between centralized and distributed processing. In our model, a fraction p of an available resource is deployed in a centralized manner (e.g., to serve a most loaded station) while the remaining fraction 1-p is allocat...

Full description

Bibliographic Details
Main Authors: Tsitsiklis, John N. (Contributor), Xu, Kuang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Association for Computing Machinery (ACM), 2013-09-26T14:17:12Z.
Subjects:
Online Access:Get fulltext
Description
Summary:We propose and analyze a multi-server model that captures a performance trade-off between centralized and distributed processing. In our model, a fraction p of an available resource is deployed in a centralized manner (e.g., to serve a most loaded station) while the remaining fraction 1-p is allocated to local servers that can only serve requests addressed specifically to their respective stations. Using a fluid model approach, we demonstrate a surprising phase transition in steady-state delay, as p changes: in the limit of a large number of stations, and when any amount of centralization is available (p>0), the average queue length in steady state scales as log [subscript 1/1-p] 1/1-λ when the traffic intensity λ goes to 1. This is exponentially smaller than the usual M/M/1-queue delay scaling of 1/1-λ, obtained when all resources are fully allocated to local stations (p=0). This indicates a strong qualitative impact of even a small degree of centralization. We prove convergence to a fluid limit, and characterize both the transient and steady-state behavior of the finite system, in the limit as the number of stations N goes to infinity. We show that the queue-length process converges to a unique fluid trajectory (over any finite time interval, as N → ∞), and that this fluid trajectory converges to a unique invariant state v[superscript I], for which a simple closed-form expression is obtained. We also show that the steady-state distribution of the N-server system concentrates on v[superscript I] as N goes to infinity.
Irwin Mark Jacobs and Joan Klein Jacobs Presidential Fellowship
Xerox Fellowship Program
Thomas and Stacey Siebel Foundation (Scholarship)
National Science Foundation (U.S.) (Grant CCF-0728554)