Codimension one symplectic foliations and regular Poisson structures

Original manuscript June 21, 2011

Bibliographic Details
Main Authors: Miranda, Eva (Author), Guillemin, Victor W. (Contributor), Pissarra Pires, Ana Rita (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2013-09-23T16:31:28Z.
Subjects:
Online Access:Get fulltext
LEADER 01326 am a22002173u 4500
001 80869
042 |a dc 
100 1 0 |a Miranda, Eva  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Guillemin, Victor W.  |e contributor 
100 1 0 |a Pissarra Pires, Ana Rita  |e contributor 
700 1 0 |a Guillemin, Victor W.  |e author 
700 1 0 |a Pissarra Pires, Ana Rita  |e author 
245 0 0 |a Codimension one symplectic foliations and regular Poisson structures 
260 |b Springer-Verlag,   |c 2013-09-23T16:31:28Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/80869 
520 |a Original manuscript June 21, 2011 
520 |a In this short note we give a complete characterization of a certain class of compact corank one Poisson manifolds, those equipped with a closed one-form defining the symplectic foliation and a closed two-form extending the symplectic form on each leaf. If such a manifold has a compact leaf, then all the leaves are compact, and furthermore the manifold is a mapping torus of a compact leaf. These manifolds and their regular Poisson structures admit an extension as the critical hypersurface of a b-Poisson manifold as we will see in [9]. 
546 |a en_US 
655 7 |a Article 
773 |t Bulletin of the Brazilian Mathematical Society, New Series