A Fulling-Kuchment theorem for the 1D harmonic oscillator

Original manuscript September 5, 2011

Bibliographic Details
Main Authors: Hezari, Hamid (Contributor), Guillemin, Victor W. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: IOP Publishing, 2013-09-23T15:12:59Z.
Subjects:
Online Access:Get fulltext
LEADER 01165 am a22002293u 4500
001 80859
042 |a dc 
100 1 0 |a Hezari, Hamid  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Guillemin, Victor W.  |e contributor 
100 1 0 |a Hezari, Hamid  |e contributor 
700 1 0 |a Guillemin, Victor W.  |e author 
245 0 0 |a A Fulling-Kuchment theorem for the 1D harmonic oscillator 
260 |b IOP Publishing,   |c 2013-09-23T15:12:59Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/80859 
520 |a Original manuscript September 5, 2011 
520 |a We prove that there exists a pair of non-isospectral 1D semiclassical Schrödinger operators whose spectra agree up to O(h∞). In particular, all their semiclassical trace invariants are the same. Our proof is based on an idea of Fulling-Kuchment and Hadamard's variational formula applied to suitable perturbations of the harmonic oscillator. 
520 |a National Science Foundation (U.S.) (Grant DMS-1005696) 
520 |a National Science Foundation (U.S.) (Grant DMS-0969745) 
546 |a en_US 
655 7 |a Article 
773 |t Inverse Problems