Computational Approaches to Poisson Traces Associated to Finite Subgroups of Sp[subscript 2n](C)

Original manuscript January 26, 2011

Bibliographic Details
Main Authors: Gong, Sherry (Contributor), Ren, Qingchun (Author), Schedler, Travis (Contributor), Etingof, Pavel I. (Contributor), Pacchiano Camacho, Aldo (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Taylor & Francis, 2013-09-23T14:39:05Z.
Subjects:
Online Access:Get fulltext
LEADER 01949 am a22003133u 4500
001 80857
042 |a dc 
100 1 0 |a Gong, Sherry  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
100 1 0 |a Gong, Sherry  |e contributor 
100 1 0 |a Pacchiano Camacho, Aldo  |e contributor 
100 1 0 |a Schedler, Travis  |e contributor 
700 1 0 |a Ren, Qingchun  |e author 
700 1 0 |a Schedler, Travis  |e author 
700 1 0 |a Etingof, Pavel I.  |e author 
700 1 0 |a Pacchiano Camacho, Aldo  |e author 
245 0 0 |a Computational Approaches to Poisson Traces Associated to Finite Subgroups of Sp[subscript 2n](C) 
260 |b Taylor & Francis,   |c 2013-09-23T14:39:05Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/80857 
520 |a Original manuscript January 26, 2011 
520 |a We reduce the computation of Poisson traces on quotients of symplectic vector spaces by finite subgroups of symplectic automorphisms to a finite one by proving several results that bound the degrees of such traces as well as the dimension in each degree. This applies more generally to traces on all polynomial functions that are invariant under invariant Hamiltonian flow. We implement these approaches by computer together with direct computation for infinite families of groups, focusing on complex reflection and abelian subgroups of GL[subscript 2](C) < Sp[subscript 4](C), Coxeter groups of rank <3 and types A 4, B 4=C 4, and D 4, and subgroups of SL[subscript 2](C). 
520 |a National Science Foundation (U.S.) (Grant DMS-1000113) 
520 |a American Institute of Mathematics (Fellowship) 
520 |a National Science Foundation (U.S.) (Grant DMS-0900233) 
546 |a en_US 
655 7 |a Article 
773 |t Experimental Mathematics