Fixation for distributed clustering processes

Author's final manuscript January 19, 2010

Bibliographic Details
Main Authors: Louidor, O. (Author), Newman, C. M. (Author), Rolla, L. T. (Author), Sidoravicius, V. (Author), Hilario, M. R. (Author), Sheffield, Scott Roger (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Wiley Blackwell, 2013-09-16T12:24:41Z.
Subjects:
Online Access:Get fulltext
LEADER 01426 am a22002653u 4500
001 80731
042 |a dc 
100 1 0 |a Louidor, O.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Sheffield, Scott Roger  |e contributor 
700 1 0 |a Newman, C. M.  |e author 
700 1 0 |a Rolla, L. T.  |e author 
700 1 0 |a Sidoravicius, V.  |e author 
700 1 0 |a Hilario, M. R.  |e author 
700 1 0 |a Sheffield, Scott Roger  |e author 
245 0 0 |a Fixation for distributed clustering processes 
260 |b Wiley Blackwell,   |c 2013-09-16T12:24:41Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/80731 
520 |a Author's final manuscript January 19, 2010 
520 |a We study a discrete-time resource flow in Z[superscript d] where wealthier vertices attract the resources of their less rich neighbors. For any translation-invariant probability distribution of initial resource quantities, we prove that the flow at each vertex terminates after finitely many steps. This answers (a generalized version of) a question posed by van den Berg and Meester in 1991. The proof uses the mass transport principle and extends to other graphs. 
520 |a National Science Foundation (U.S.) (Grant DMS-06-45585) 
520 |a National Science Foundation (U.S.) (Grant OISE-07-30136) 
546 |a en_US 
655 7 |a Article 
773 |t Communications on Pure and Applied Mathematics