Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach...

Full description

Bibliographic Details
Main Authors: Pilawa-Podgurski, R. C. N. (Author), Chan, Walker R. (Contributor), Bermel, Peter A. (Contributor), Marton, Christopher Henry (Contributor), Jensen, Klavs F. (Contributor), Senkevich, Jay (Contributor), Joannopoulos, John D. (Contributor), Soljacic, Marin (Contributor), Celanovic, Ivan (Contributor)
Other Authors: Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contributor), MIT Materials Research Laboratory (Contributor), Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: National Academy of Sciences (U.S.), 2013-09-13T14:29:16Z.
Subjects:
Online Access:Get fulltext
LEADER 03356 am a22004333u 4500
001 80714
042 |a dc 
100 1 0 |a Pilawa-Podgurski, R. C. N.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies  |e contributor 
100 1 0 |a MIT Materials Research Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Chan, Walker R.  |e contributor 
100 1 0 |a Bermel, Peter A.  |e contributor 
100 1 0 |a Marton, Christopher Henry  |e contributor 
100 1 0 |a Jensen, Klavs F.  |e contributor 
100 1 0 |a Senkevich, Jay  |e contributor 
100 1 0 |a Joannopoulos, John D.  |e contributor 
100 1 0 |a Soljacic, Marin  |e contributor 
100 1 0 |a Celanovic, Ivan  |e contributor 
700 1 0 |a Chan, Walker R.  |e author 
700 1 0 |a Bermel, Peter A.  |e author 
700 1 0 |a Marton, Christopher Henry  |e author 
700 1 0 |a Jensen, Klavs F.  |e author 
700 1 0 |a Senkevich, Jay  |e author 
700 1 0 |a Joannopoulos, John D.  |e author 
700 1 0 |a Soljacic, Marin  |e author 
700 1 0 |a Celanovic, Ivan  |e author 
245 0 0 |a Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics 
260 |b National Academy of Sciences (U.S.),   |c 2013-09-13T14:29:16Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/80714 
520 |a The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm[superscript 2] area. 
520 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004) 
520 |a nited States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the National Academy of Sciences