Seiberg-witten equations, end-periodic dirac operators, and a lift of Rohlin's invariant

Author Manuscript: 4 Apr 2011

Bibliographic Details
Main Authors: Mrowka, Tomasz S. (Contributor), Ruberman, Daniel (Author), Saveliev, Nikolai (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: International Press of Boston, Inc., 2013-09-11T18:02:09Z.
Subjects:
Online Access:Get fulltext
LEADER 01286 am a22002053u 4500
001 80399
042 |a dc 
100 1 0 |a Mrowka, Tomasz S.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Mrowka, Tomasz S.  |e contributor 
700 1 0 |a Ruberman, Daniel  |e author 
700 1 0 |a Saveliev, Nikolai  |e author 
245 0 0 |a Seiberg-witten equations, end-periodic dirac operators, and a lift of Rohlin's invariant 
260 |b International Press of Boston, Inc.,   |c 2013-09-11T18:02:09Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/80399 
520 |a Author Manuscript: 4 Apr 2011 
520 |a We introduce a gauge-theoretic integer valued lift of the Rohlin invariant of a smooth 4-manifold X with the homology of S[superscript 1]×S[superscript 3]. The invariant has two terms: one is a count of solutions to the Seiberg-Witten equations on X, and the other is essentially the index of the Dirac operator on a non-compact manifold with end modeled on the infinite cyclic cover of X. Each term is metric (and perturbation) dependent, and we show that these dependencies cancel as the metric and perturbation vary in a generic 1-parameter family. 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Differential Geometry