A wirelessly powered and controlled device for optical neural control of freely-behaving animals

Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists' capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically, awak...

Full description

Bibliographic Details
Main Authors: Wentz, Christian T. (Contributor), Bernstein, Jacob G. (Contributor), Monahan, Patrick Erin (Contributor), Guerra, Alexander (Contributor), Rodriguez, Alex (Contributor), Boyden, Edward Stuart (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Media Laboratory (Contributor), McGovern Institute for Brain Research at MIT (Contributor)
Format: Article
Language:English
Published: Institute of Physics Publishing, 2013-08-12T20:32:40Z.
Subjects:
Online Access:Get fulltext
LEADER 04537 am a22005893u 4500
001 79836
042 |a dc 
100 1 0 |a Wentz, Christian T.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a McGovern Institute for Brain Research at MIT  |e contributor 
100 1 0 |a Wentz, Christian T.  |e contributor 
100 1 0 |a Bernstein, Jacob G.  |e contributor 
100 1 0 |a Monahan, Patrick Erin  |e contributor 
100 1 0 |a Guerra, Alexander  |e contributor 
100 1 0 |a Rodriguez, Alex  |e contributor 
100 1 0 |a Boyden, Edward Stuart  |e contributor 
700 1 0 |a Bernstein, Jacob G.  |e author 
700 1 0 |a Monahan, Patrick Erin  |e author 
700 1 0 |a Guerra, Alexander  |e author 
700 1 0 |a Rodriguez, Alex  |e author 
700 1 0 |a Boyden, Edward Stuart  |e author 
245 0 0 |a A wirelessly powered and controlled device for optical neural control of freely-behaving animals 
260 |b Institute of Physics Publishing,   |c 2013-08-12T20:32:40Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/79836 
520 |a Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists' capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically, awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted light-emitting diode (LED), tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the extended illumination periods often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 g capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2 W of power to the LEDs in steady state, and 4.3 W in bursts. We also present an optional radio transceiver module (1 g) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be controlled simultaneously from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control. 
520 |a National Institutes of Health (U.S.) (NIH Director's New Innovator Award (DP2OD002002)) 
520 |a National Institutes of Health (U.S.) (Grant 1R01DA029639) 
520 |a National Institutes of Health (U.S.) (Grant 1RC1MH088182) 
520 |a National Institutes of Health (U.S.) (Grant 1RC2DE020919) 
520 |a National Institutes of Health (U.S.) (Grant 1R01NS067199) 
520 |a National Institutes of Health (U.S.) (Grant 1R43NS070453) 
520 |a National Science Foundation (U.S.) (CAREER award) 
520 |a National Science Foundation (U.S.) (NSF Grant DMS 1042134) 
520 |a National Science Foundation (U.S.) (NSF Grant DMS 0848804) 
520 |a National Science Foundation (U.S.) (NSF Grant EFRI 0835878) 
520 |a Benesse Foundation 
520 |a Google (Firm) 
520 |a Dr. Gerald Burnett and Marjorie Burnett 
520 |a United States. Dept. of Defense (CDMRP PTSD Program) 
520 |a Massachusetts Institute of Technology 
520 |a Brain & Behavior Research Foundation 
520 |a Alfred P. Sloan Foundation 
520 |a Society for Neuroscience 
520 |a Massachusetts Institute of Technology. Media Laboratory 
520 |a McGovern Institute for Brain Research at MIT 
520 |a Wallace H. Coulter Foundation 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Neural Engineering