Direct gap photoluminescence of n-type tensile-strained Ge-on-Si

Room temperature direct gap photoluminescence (PL) was observed from n-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n-type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases with...

Full description

Bibliographic Details
Main Authors: Sun, Xiaochen (Contributor), Liu, Jifeng (Contributor), Kimerling, Lionel C. (Author), Michel, Jurgen (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Microphotonics Center (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2013-08-05T20:10:24Z.
Subjects:
Online Access:Get fulltext
LEADER 01600 am a22002533u 4500
001 79793
042 |a dc 
100 1 0 |a Sun, Xiaochen  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Microphotonics Center  |e contributor 
100 1 0 |a Sun, Xiaochen  |e contributor 
100 1 0 |a Liu, Jifeng  |e contributor 
100 1 0 |a Michel, Jurgen  |e contributor 
700 1 0 |a Liu, Jifeng  |e author 
700 1 0 |a Kimerling, Lionel C.  |e author 
700 1 0 |a Michel, Jurgen  |e author 
245 0 0 |a Direct gap photoluminescence of n-type tensile-strained Ge-on-Si 
260 |b American Physical Society,   |c 2013-08-05T20:10:24Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/79793 
520 |a Room temperature direct gap photoluminescence (PL) was observed from n-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n-type doping due to a higher electron population in the direct Γ valley as a result of increased Fermi level. The direct gap emission also increases with temperature due to thermal excitation of electrons into the direct Γ valley, exhibiting robustness to heating effects. These unique properties of direct gap emission in an indirect gap material agree with our theoretical model and make Ge a promising light emitting material in 1550 nm communication band. 
520 |a United States. Air Force Office of Scientific Research (Multidisciplinary University Research Initiative) 
546 |a en_US 
655 7 |a Article 
773 |t Applied Physics Letters