Tunable spatial heterogeneity in structure and composition within aqueous microfluidic droplets

In this paper, we demonstrate biphasic microfluidic droplets with broadly tunable internal structures, from simple near-equilibrium drop-in-drop morphologies to complex yet uniform non-equilibrium steady-state structures. The droplets contain an aqueous mixture of poly(ethylene glycol) (PEG) and dex...

Full description

Bibliographic Details
Main Authors: Hui, Sophia Lee Su (Contributor), Wang, Pengzhi (Author), Kun Yap, Swee (Author), Khan, Saif A. (Contributor), Hatton, Trevor Alan (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Singapore-MIT Alliance in Research and Technology (SMART) (Contributor), Hatton, T. Alan (Contributor)
Format: Article
Language:English
Published: American Institute of Physics, 2013-06-21T15:23:05Z.
Subjects:
Online Access:Get fulltext
LEADER 02159 am a22002773u 4500
001 79363
042 |a dc 
100 1 0 |a Hui, Sophia Lee Su  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Singapore-MIT Alliance in Research and Technology   |q  (SMART)   |e contributor 
100 1 0 |a Hui, Sophia Lee Su  |e contributor 
100 1 0 |a Hatton, T. Alan  |e contributor 
100 1 0 |a Khan, Saif A.  |e contributor 
700 1 0 |a Wang, Pengzhi  |e author 
700 1 0 |a Kun Yap, Swee  |e author 
700 1 0 |a Khan, Saif A.  |e author 
700 1 0 |a Hatton, Trevor Alan  |e author 
245 0 0 |a Tunable spatial heterogeneity in structure and composition within aqueous microfluidic droplets 
260 |b American Institute of Physics,   |c 2013-06-21T15:23:05Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/79363 
520 |a In this paper, we demonstrate biphasic microfluidic droplets with broadly tunable internal structures, from simple near-equilibrium drop-in-drop morphologies to complex yet uniform non-equilibrium steady-state structures. The droplets contain an aqueous mixture of poly(ethylene glycol) (PEG) and dextran and are dispensed into an immiscible oil in a microfluidic T-junction device. Above a certain well-defined threshold droplet speed, the inner dextran-rich phase is "stirred" within the outer PEG-rich phase. The stirred polymer mixture is observed to exhibit a near continuum of speed and composition-dependent phase morphologies. There is increasing interest in the use of such aqueous two-phase systems in microfluidic devices for biomolecular applications in a variety of contexts. Our work presents a method to go beyond equilibrium phase morphologies in generating microfluidic "multiple" emulsions and at the same time raises the possibility of biochemical experimentation in benign yet complex biomimetic milieus. 
520 |a National University of Singapore 
520 |a Singapore-MIT Alliance for Research and Technology (Chemical and Pharmaceutical Engineering Programme) 
546 |a en_US 
655 7 |a Article 
773 |t Biomicrofluidics