Two-link swimming using buoyant orientation

The scallop theorem posits that a two-link system immersed in a fluid at low Reynolds number cannot achieve any net translation via cyclic changes in its hinge angle. Here, we propose an approach to "breaking" this theorem, based on a static separation between the centers of mass and buoya...

Full description

Bibliographic Details
Main Authors: Burton, Lisa Janelle (Contributor), Hatton, R. L. (Author), Choset, H. (Author), Hosoi, Anette E. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Institute of Physics (AIP), 2013-04-17T18:30:33Z.
Subjects:
Online Access:Get fulltext
LEADER 01176 am a22002173u 4500
001 78570
042 |a dc 
100 1 0 |a Burton, Lisa Janelle  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Burton, Lisa Janelle  |e contributor 
100 1 0 |a Hosoi, Anette E.  |e contributor 
700 1 0 |a Hatton, R. L.  |e author 
700 1 0 |a Choset, H.  |e author 
700 1 0 |a Hosoi, Anette E.  |e author 
245 0 0 |a Two-link swimming using buoyant orientation 
260 |b American Institute of Physics (AIP),   |c 2013-04-17T18:30:33Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/78570 
520 |a The scallop theorem posits that a two-link system immersed in a fluid at low Reynolds number cannot achieve any net translation via cyclic changes in its hinge angle. Here, we propose an approach to "breaking" this theorem, based on a static separation between the centers of mass and buoyancy in a net neutrally buoyant system. This separation gives the system a natural equilibrium orientation, allowing it to passively reorient without changing shape. 
546 |a en_US 
655 7 |a Article 
773 |t Physics of Fluids