Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS)

Heat transfer across thermal interface materials is a critical issue for microelectronics thermal management. Polydimethylsiloxane (PDMS), one of the most important components of thermal interface materials presents a large barrier for heat flow due to its low thermal conductivity. In this paper, we...

Full description

Bibliographic Details
Main Authors: Luo, Tengfei (Contributor), Esfarjani, Keivan (Contributor), Shiomi, Junichiro (Contributor), Henry, Asegun (Contributor), Chen, Gang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Institute of Physics (AIP), 2013-04-02T18:22:41Z.
Subjects:
Online Access:Get fulltext
LEADER 02060 am a22002773u 4500
001 78258
042 |a dc 
100 1 0 |a Luo, Tengfei  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Luo, Tengfei  |e contributor 
100 1 0 |a Esfarjani, Keivan  |e contributor 
100 1 0 |a Shiomi, Junichiro  |e contributor 
100 1 0 |a Henry, Asegun  |e contributor 
100 1 0 |a Chen, Gang  |e contributor 
700 1 0 |a Esfarjani, Keivan  |e author 
700 1 0 |a Shiomi, Junichiro  |e author 
700 1 0 |a Henry, Asegun  |e author 
700 1 0 |a Chen, Gang  |e author 
245 0 0 |a Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS) 
260 |b American Institute of Physics (AIP),   |c 2013-04-02T18:22:41Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/78258 
520 |a Heat transfer across thermal interface materials is a critical issue for microelectronics thermal management. Polydimethylsiloxane (PDMS), one of the most important components of thermal interface materials presents a large barrier for heat flow due to its low thermal conductivity. In this paper, we use molecular dynamics simulations to identify the upper limit of the PDMS thermal conductivity by studying thermal transport in single PDMS chains with different lengths. We found that even individual molecular chains had low thermal conductivities (κ ∼ 7 W/mK), which is attributed to the chain segment disordering. Studies on double chain and crystalline structures reveal that the structure influences thermal transport due to inter-chain phonon scatterings and suppression of acoustic phonon modes. We also simulated amorphous bulk PDMS to identify the lower bound of PDMS thermal conductivity and found the low thermal conductivity (κ ∼ 0.2 W/mK) is mainly due to the inefficient transport mechanism through extended vibration modes. 
520 |a National Science Foundation (U.S.) (Grant CBET-0755825) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Applied Physics