Trainable, vision-based automated home cage behavioral phenotyping

We describe a fully trainable computer vision system enabling the automated analysis of complex mouse behaviors. Our system computes a sequence of feature descriptors for each video sequence and a classifier is used to learn a mapping from these features to behaviors of interest. We collected a very...

Full description

Bibliographic Details
Main Authors: Jhuang, Hueihan (Contributor), Garrote, Estibaliz (Contributor), Edelman, Nicholas (Contributor), Poggio, Tomaso A. (Contributor), Steele, Andrew (Author), Serre, Thomas J. (Author)
Other Authors: McGovern Institute for Brain Research at MIT (Contributor), Poggio, Tomaso (Contributor), Serre, Thomas (Contributor)
Format: Article
Language:English
Published: Association for Computing Machinery, 2013-01-31T19:26:28Z.
Subjects:
Online Access:Get fulltext
LEADER 02057 am a22003133u 4500
001 76704
042 |a dc 
100 1 0 |a Jhuang, Hueihan  |e author 
100 1 0 |a McGovern Institute for Brain Research at MIT  |e contributor 
100 1 0 |a Poggio, Tomaso  |e contributor 
100 1 0 |a Edelman, Nicholas  |e contributor 
100 1 0 |a Serre, Thomas  |e contributor 
100 1 0 |a Garrote, Estibaliz  |e contributor 
100 1 0 |a Poggio, Tomaso A.  |e contributor 
100 1 0 |a Jhuang, Hueihan  |e contributor 
700 1 0 |a Garrote, Estibaliz  |e author 
700 1 0 |a Edelman, Nicholas  |e author 
700 1 0 |a Poggio, Tomaso A.  |e author 
700 1 0 |a Steele, Andrew  |e author 
700 1 0 |a Serre, Thomas J.  |e author 
245 0 0 |a Trainable, vision-based automated home cage behavioral phenotyping 
260 |b Association for Computing Machinery,   |c 2013-01-31T19:26:28Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/76704 
520 |a We describe a fully trainable computer vision system enabling the automated analysis of complex mouse behaviors. Our system computes a sequence of feature descriptors for each video sequence and a classifier is used to learn a mapping from these features to behaviors of interest. We collected a very large manually annotated video database of mouse behaviors for training and testing the system. Our system performs on par with human scoring, as measured from the ground-truth manual annotations of thousands of clips of freely behaving mice. As a validation of the system, we characterized the home cage behaviors of two standard inbred and two nonstandard mouse strains. From this data, we were able to predict the strain identity of individual mice with high accuracy. 
520 |a California Institute of Technology. Broad Fellows Program in Brain Circuitry 
520 |a National Science Council of Taiwan (TMS-094-1-A032) 
546 |a en_US 
655 7 |a Article 
773 |t Measuring Behavior '10: selected papers from the proceedings of the 7th International Conference on Methods and Techniques in Behavioral Research, Article No. 33