A hierarchy of policies for adaptive optimization

In this paper, we propose a new tractable framework for dealing with linear dynamical systems affected by uncertainty, applicable to multistage robust optimization and stochastic programming. We introduce a hierarchy of near-optimal polynomial disturbance-feedback control policies, and show how thes...

Full description

Bibliographic Details
Main Authors: Bertsimas, Dimitris J. (Contributor), Iancu, Dan Andrei (Author), Parrilo, Pablo A. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor), Massachusetts Institute of Technology. Operations Research Center (Contributor), Sloan School of Management (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2012-11-08T17:54:54Z.
Subjects:
Online Access:Get fulltext
LEADER 02196 am a22002893u 4500
001 74604
042 |a dc 
100 1 0 |a Bertsimas, Dimitris J.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Operations Research Center  |e contributor 
100 1 0 |a Sloan School of Management  |e contributor 
100 1 0 |a Bertsimas, Dimitris J.  |e contributor 
100 1 0 |a Parrilo, Pablo A.  |e contributor 
700 1 0 |a Iancu, Dan Andrei  |e author 
700 1 0 |a Parrilo, Pablo A.  |e author 
245 0 0 |a A hierarchy of policies for adaptive optimization 
246 3 3 |a A Hierarchy of Near-Optimal Policies for Multistage Adaptive Optimization 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2012-11-08T17:54:54Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/74604 
520 |a In this paper, we propose a new tractable framework for dealing with linear dynamical systems affected by uncertainty, applicable to multistage robust optimization and stochastic programming. We introduce a hierarchy of near-optimal polynomial disturbance-feedback control policies, and show how these can be computed by solving a single semidefinite programming problem. The approach yields a hierarchy parameterized by a single variable (the degree of the polynomial policies), which controls the trade-off between the optimality gap and the computational requirements. We evaluate our framework in the context of three classical applications-two in inventory management, and one in robust regulation of an active suspension system-in which very strong numerical performance is exhibited, at relatively modest computational expense. 
520 |a National Science Foundation (U.S.) (Grant EFRI-0735905) 
520 |a National Science Foundation (U.S.) (Grant DMI-0556106) 
520 |a United States. Air Force Office of Scientific Research (Grant FA9550-06-1-0303) 
546 |a en_US 
655 7 |a Article 
773 |t IEEE Transactions on Automatic Control