Geometric proof of the equality between entanglement and edge spectra

The bulk-edge correspondence for topological quantum liquids states that the spectrum of the reduced density matrix of a large subregion reproduces the thermal state of a physical edge. This correspondence suggests an intricate connection between ground state entanglement and physical edge dynamics....

Full description

Bibliographic Details
Main Authors: Swingle, Brian Gordon (Contributor), Todadri, Senthil (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2012-10-25T17:32:11Z.
Subjects:
Online Access:Get fulltext
LEADER 01495 am a22002173u 4500
001 74251
042 |a dc 
100 1 0 |a Swingle, Brian Gordon  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Swingle, Brian Gordon  |e contributor 
100 1 0 |a Todadri, Senthil  |e contributor 
700 1 0 |a Todadri, Senthil  |e author 
245 0 0 |a Geometric proof of the equality between entanglement and edge spectra 
260 |b American Physical Society,   |c 2012-10-25T17:32:11Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/74251 
520 |a The bulk-edge correspondence for topological quantum liquids states that the spectrum of the reduced density matrix of a large subregion reproduces the thermal state of a physical edge. This correspondence suggests an intricate connection between ground state entanglement and physical edge dynamics. We give a simple geometric proof of the bulk-edge correspondence for a wide variety of physical systems. Our unified proof relies on geometric techniques available in Lorentz invariant and conformally invariant quantum field theories. These methods were originally developed in part to understand the physics of black holes, and we now apply them to determine the local structure of entanglement in quantum many-body systems. 
520 |a Simons Foundation. Fellowship 
520 |a National Science Foundation (U.S.) (Grant DMR-1005434) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review B