Folding equilateral plane graphs

22nd International Symposium, ISAAC 2011, Yokohama, Japan, December 5-8, 2011. Proceedings

Bibliographic Details
Main Authors: Abel, Zachary Ryan (Contributor), Demaine, Erik D. (Contributor), Demaine, Martin L. (Contributor), Eisenstat, Sarah Charmian (Contributor), Lynch, Jayson R. (Contributor), Schardl, Tao Benjamin (Contributor), Shapiro-Ellowitz, Isaac (Author)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer Berlin / Heidelberg, 2012-10-10T16:16:21Z.
Subjects:
Online Access:Get fulltext
LEADER 02442 am a22003373u 4500
001 73838
042 |a dc 
100 1 0 |a Abel, Zachary Ryan  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Abel, Zachary Ryan  |e contributor 
100 1 0 |a Demaine, Erik D.  |e contributor 
100 1 0 |a Demaine, Martin L.  |e contributor 
100 1 0 |a Eisenstat, Sarah Charmian  |e contributor 
100 1 0 |a Lynch, Jayson R.  |e contributor 
100 1 0 |a Schardl, Tao Benjamin  |e contributor 
700 1 0 |a Demaine, Erik D.  |e author 
700 1 0 |a Demaine, Martin L.  |e author 
700 1 0 |a Eisenstat, Sarah Charmian  |e author 
700 1 0 |a Lynch, Jayson R.  |e author 
700 1 0 |a Schardl, Tao Benjamin  |e author 
700 1 0 |a Shapiro-Ellowitz, Isaac  |e author 
245 0 0 |a Folding equilateral plane graphs 
260 |b Springer Berlin / Heidelberg,   |c 2012-10-10T16:16:21Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/73838 
520 |a 22nd International Symposium, ISAAC 2011, Yokohama, Japan, December 5-8, 2011. Proceedings 
520 |a We consider two types of folding applied to equilateral plane graph linkages. First, under continuous folding motions, we show how to reconfigure any linear equilateral tree (lying on a line) into a canonical configuration. By contrast, such reconfiguration is known to be impossible for linear (nonequilateral) trees and for (nonlinear) equilateral trees. Second, under instantaneous folding motions, we show that an equilateral plane graph has a noncrossing linear folded state if and only if it is bipartite. Not only is the equilateral constraint necessary for this result, but we show that it is strongly NP-complete to decide whether a (nonequilateral) plane graph has a linear folded state. Equivalently, we show strong NP-completeness of deciding whether an abstract metric polyhedral complex with one central vertex has a noncrossing flat folded state with a specified "outside region". By contrast, the analogous problem for a polyhedral manifold with one central vertex (single-vertex origami) is only weakly NP-complete. 
546 |a en_US 
655 7 |a Article 
773 |t Algorithms and Computation