Distributed Averaging Via Lifted Markov Chains

Motivated by applications of distributed linear estimation, distributed control, and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a network. Specifically, our interest is in designing such an algorithm with the fa...

Full description

Bibliographic Details
Main Authors: Jung, Kyomin (Contributor), Shah, Devavrat (Contributor), Shin, Jinwoo (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2012-09-20T16:55:09Z.
Subjects:
Online Access:Get fulltext
LEADER 02094 am a22002293u 4500
001 73071
042 |a dc 
100 1 0 |a Jung, Kyomin  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
100 1 0 |a Jung, Kyomin  |e contributor 
100 1 0 |a Shah, Devavrat  |e contributor 
100 1 0 |a Shin, Jinwoo  |e contributor 
700 1 0 |a Shah, Devavrat  |e author 
700 1 0 |a Shin, Jinwoo  |e author 
245 0 0 |a Distributed Averaging Via Lifted Markov Chains 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2012-09-20T16:55:09Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/73071 
520 |a Motivated by applications of distributed linear estimation, distributed control, and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a network. Specifically, our interest is in designing such an algorithm with the fastest rate of convergence given the topological constraints of the network. As the main result of this paper, we design an algorithm with the fastest possible rate of convergence using a nonreversible Markov chain on the given network graph. We construct such a Markov chain by transforming the standard Markov chain, which is obtained using the Metropolis-Hastings method. We call this novel transformation pseudo-lifting. We apply our method to graphs with geometry, or graphs with doubling dimension. Specifically, the convergence time of our algorithm (equivalently, the mixing time of our Markov chain) is proportional to the diameter of the network graph and hence optimal. As a byproduct, our result provides the fastest mixing Markov chain given the network topological constraints, and should naturally find their applications in the context of distributed optimization, estimation and control. 
546 |a en_US 
655 7 |a Article 
773 |t IEEE Transactions on Information Theory