Picture-hanging puzzles

We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic...

Full description

Bibliographic Details
Main Authors: Demaine, Erik D. (Contributor), Demaine, Martin L. (Contributor), Minsky, Yair N. (Author), Mitchell, Joseph S. B. (Author), Rivest, Ronald L. (Contributor), Patrascu, Mihai (Author)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2012-08-28T20:47:41Z.
Subjects:
Online Access:Get fulltext
LEADER 01731 am a22002893u 4500
001 72400
042 |a dc 
100 1 0 |a Demaine, Erik D.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Rivest, Ronald L.  |e contributor 
100 1 0 |a Demaine, Erik D.  |e contributor 
100 1 0 |a Demaine, Martin L.  |e contributor 
100 1 0 |a Rivest, Ronald L.  |e contributor 
700 1 0 |a Demaine, Martin L.  |e author 
700 1 0 |a Minsky, Yair N.  |e author 
700 1 0 |a Mitchell, Joseph S. B.  |e author 
700 1 0 |a Rivest, Ronald L.  |e author 
700 1 0 |a Patrascu, Mihai  |e author 
245 0 0 |a Picture-hanging puzzles 
260 |b Springer-Verlag,   |c 2012-08-28T20:47:41Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/72400 
520 |a We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic performances. More generally, we characterize the possible Boolean functions characterizing when the picture falls in terms of which nails get removed as all monotone Boolean functions. This construction requires an exponential number of twists in the worst case, but exponential complexity is almost always necessary for general functions. 
520 |a National Science Foundation (U.S.) (NSF grant CCF-1018388) 
546 |a en_US 
655 7 |a Article 
773 |t Fun With Algorithms