An Energy-Efficient Biomedical Signal Processing Platform

This paper presents an energy-efficient processing platform for wearable sensor nodes, designed to support diverse biological signals and algorithms. The platform features a 0.5V-1.0V 16b microcontroller, SRAM, and accelerators for biomedical signal processing. Voltage scaling and block-level power...

Full description

Bibliographic Details
Main Authors: Kwong, Joyce (Contributor), Chandrakasan, Anantha P. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2012-08-17T18:46:55Z.
Subjects:
Online Access:Get fulltext
LEADER 01594 am a22002173u 4500
001 72195
042 |a dc 
100 1 0 |a Kwong, Joyce  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Chandrakasan, Anantha P.  |e contributor 
100 1 0 |a Kwong, Joyce  |e contributor 
100 1 0 |a Chandrakasan, Anantha P.  |e contributor 
700 1 0 |a Chandrakasan, Anantha P.  |e author 
245 0 0 |a An Energy-Efficient Biomedical Signal Processing Platform 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2012-08-17T18:46:55Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/72195 
520 |a This paper presents an energy-efficient processing platform for wearable sensor nodes, designed to support diverse biological signals and algorithms. The platform features a 0.5V-1.0V 16b microcontroller, SRAM, and accelerators for biomedical signal processing. Voltage scaling and block-level power gating allow optimizing energy efficiency under applications of varying complexity. Programmable accelerators support numerous usage scenarios and perform signal processing tasks at 133 to 215× lower energy than the general-purpose CPU. When running complete EEG and EKG applications using both CPU and accelerators, the platform achieves 10.2× and 11.5× energy reduction respectively compared to CPU-only implementations. 
520 |a Natural Sciences and Engineering Research Council of Canada (NSERC). Fellowship 
546 |a en_US 
655 7 |a Article 
773 |t 2010 Proceedings of the ESSCIRC