Orientations, lattice polytopes, and group arrangements II: Modular and integral flow Polynomials of graphs

We study modular and integral flow polynomials of graphs by means of subgroup arrangements and lattice polytopes. We introduce an Eulerian equivalence relation on orientations, flow arrangements, and flow polytopes; and we apply the theory of Ehrhart polynomials to obtain properties of modular and i...

Full description

Bibliographic Details
Main Authors: Chen, Beifang (Author), Stanley, Richard P. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2012-08-08T20:21:58Z.
Subjects:
Online Access:Get fulltext
LEADER 01603 am a22002293u 4500
001 72051
042 |a dc 
100 1 0 |a Chen, Beifang  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Stanley, Richard P.  |e contributor 
100 1 0 |a Stanley, Richard P.  |e contributor 
700 1 0 |a Stanley, Richard P.  |e author 
245 0 0 |a Orientations, lattice polytopes, and group arrangements II: Modular and integral flow Polynomials of graphs 
260 |b Springer-Verlag,   |c 2012-08-08T20:21:58Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/72051 
520 |a We study modular and integral flow polynomials of graphs by means of subgroup arrangements and lattice polytopes. We introduce an Eulerian equivalence relation on orientations, flow arrangements, and flow polytopes; and we apply the theory of Ehrhart polynomials to obtain properties of modular and integral flow polynomials. The emphasis is on the geometrical treatment through subgroup arrangements and Ehrhart polynomials. Such viewpoint leads to a reciprocity law on the modular flow polynomial, which gives rise to an interpretation on the values of the modular flow polynomial at negative integers and answers a question by Beck and Zaslavsky. 
520 |a Regal Entertainment Group (Competitive Earmarked Research Grants 600703) 
520 |a Regal Entertainment Group (Competitive Earmarked Research Grants 600506) 
520 |a Regal Entertainment Group (Competitive Earmarked Research Grants 600608) 
546 |a en_US 
655 7 |a Article 
773 |t Graphs and Combinatorics