A Unified Analysis of Balancing Domain Decomposition by Constraints for Discontinuous Galerkin Discretizations
The BDDC algorithm is extended to a large class of discontinuous Galerkin (DG) discretizations of second order elliptic problems. An estimate of C(1 + log(H/h))2 is obtained for the condition number of the preconditioned system where C is a constant independent of h or H or large jumps in the coeffi...
Main Authors: | , |
---|---|
Other Authors: | , |
Format: | Article |
Language: | English |
Published: |
Society for Industrial and Applied Mathematics,
2012-07-19T20:13:50Z.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | The BDDC algorithm is extended to a large class of discontinuous Galerkin (DG) discretizations of second order elliptic problems. An estimate of C(1 + log(H/h))2 is obtained for the condition number of the preconditioned system where C is a constant independent of h or H or large jumps in the coefficient of the problem. Numerical simulations are presented which confirm the theoretical results. A key component for the development and analysis of the BDDC algorithm is a novel perspective presenting the DG discretization as the sum of element-wise "local" bilinear forms. The element-wise perspective allows for a simple unified analysis of a variety of DG methods and leads naturally to the appropriate choice for the subdomain-wise local bilinear forms. Additionally, this new perspective enables a connection to be drawn between the DG discretization and a related continuous finite element discretization to simplify the analysis of the BDDC algorithm. Boeing Company Massachusetts Institute of Technology (Zakhartchenko Fellowship) |
---|