Magnetic tunnel junctions with MgO-EuO composite tunnel barriers

The chalcogenide compound EuO is best known as a highly efficient spin-filter tunnel barrier material. Using the molecular beam epitaxy method, we combine polycrystalline EuO with epitaxial MgO and construct magnetic tunnel junctions with such hybrid tunnel barriers. Tunnel magnetoresistance of over...

Full description

Bibliographic Details
Main Authors: Miao, Guoxing (Contributor), Moodera, Jagadeesh (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor), Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2012-07-19T19:51:40Z.
Subjects:
Online Access:Get fulltext
LEADER 01562 am a22002413u 4500
001 71710
042 |a dc 
100 1 0 |a Miao, Guoxing  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Francis Bitter Magnet Laboratory   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Moodera, Jagadeesh  |e contributor 
100 1 0 |a Miao, Guoxing  |e contributor 
100 1 0 |a Moodera, Jagadeesh  |e contributor 
700 1 0 |a Moodera, Jagadeesh  |e author 
245 0 0 |a Magnetic tunnel junctions with MgO-EuO composite tunnel barriers 
260 |b American Physical Society,   |c 2012-07-19T19:51:40Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/71710 
520 |a The chalcogenide compound EuO is best known as a highly efficient spin-filter tunnel barrier material. Using the molecular beam epitaxy method, we combine polycrystalline EuO with epitaxial MgO and construct magnetic tunnel junctions with such hybrid tunnel barriers. Tunnel magnetoresistance of over 40% was achieved in junctions with oxygen-rich EuO. For lower oxygen concentration, magnetoresistance decreases dramatically and eventually vanishes, indicating that spin filtering is weakened when the transport is mainly mediated by excess conduction channels through defect sites. 
520 |a National Science Foundation (U.S.) (Grant No. DMR 0504158) 
520 |a United States. Office of Naval Research (Grant No. N00014- 09-1-0177) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review B