A bar operator for involutions in a Coxeter group

In [LV] the authors defined a Hecke algebra action and a bar involution on a vector space spanned by the involutions in a Weyl group. In this paper we give a new definition of the Hecke algebra action and the bar operator which, unlike the one in [LV], is completely elementary (does not use geometry...

Full description

Bibliographic Details
Main Author: Lusztig, George (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Institute of Mathematics, Academia Sinica, 2021-09-09T15:59:16Z.
Subjects:
Online Access:Get fulltext
LEADER 01082 am a22001933u 4500
001 71689.2
042 |a dc 
100 1 0 |a Lusztig, George  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Lusztig, George  |e contributor 
100 1 0 |a Lusztig, George  |e contributor 
245 0 0 |a A bar operator for involutions in a Coxeter group 
260 |b Institute of Mathematics, Academia Sinica,   |c 2021-09-09T15:59:16Z. 
856 |z Get fulltext  |u https://hdl.handle.net/1721.1/71689.2 
520 |a In [LV] the authors defined a Hecke algebra action and a bar involution on a vector space spanned by the involutions in a Weyl group. In this paper we give a new definition of the Hecke algebra action and the bar operator which, unlike the one in [LV], is completely elementary (does not use geometry) and in particular it makes sense for an arbitrary Coxeter group. 
520 |a National Science Foundation (U.S.) (grant DMS-0758262) 
546 |a en_US 
655 7 |a Article 
773 |t Bulletin of the Institute of Mathematics Academia Sinica NS