Strichartz Estimates for the Water-Wave Problem with Surface Tension

Strichartz-type estimates for one-dimensional surface water-waves under surface tension are studied, based on the formulation of the problem as a nonlinear dispersive equation. We establish a family of dispersion estimates on time scales depending on the size of the frequencies. We infer that a solu...

Full description

Bibliographic Details
Main Authors: Christianson, Hans (Contributor), Hur, Vera Mikyoung (Contributor), Staffilani, Gigliola (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Taylor & Francis Group, 2012-07-17T18:16:50Z.
Subjects:
Online Access:Get fulltext
LEADER 01754 am a22002773u 4500
001 71655
042 |a dc 
100 1 0 |a Christianson, Hans  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Staffilani, Gigliola  |e contributor 
100 1 0 |a Staffilani, Gigliola  |e contributor 
100 1 0 |a Christianson, Hans  |e contributor 
100 1 0 |a Hur, Vera Mikyoung  |e contributor 
700 1 0 |a Hur, Vera Mikyoung  |e author 
700 1 0 |a Staffilani, Gigliola  |e author 
245 0 0 |a Strichartz Estimates for the Water-Wave Problem with Surface Tension 
260 |b Taylor & Francis Group,   |c 2012-07-17T18:16:50Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/71655 
520 |a Strichartz-type estimates for one-dimensional surface water-waves under surface tension are studied, based on the formulation of the problem as a nonlinear dispersive equation. We establish a family of dispersion estimates on time scales depending on the size of the frequencies. We infer that a solution u of the dispersive equation we introduce satisfies local-in-time Strichartz estimates with loss in derivative: ... where C depends on T and on the norms of the H[superscript s]-norm of the initial data. The proof uses the frequency analysis and semiclassical Strichartz estimates for the linealized water-wave operator. 
520 |a National Science Foundation (U.S.) (Postdoctoral Fellowship) 
520 |a National Science Foundation (U.S.) (NSF grants DMS-0707647) 
520 |a National Science Foundation (U.S.) (NSF grant DMS-1002854) 
520 |a National Science Foundation (U.S.) (NSF grant DMS-0602678) 
546 |a en_US 
655 7 |a Article 
773 |t Communications in Partial Differential Equations