Automated Segmentation of Hippocampal Subfields From Ultra-High Resolution In Vivo MRI

Recent developments in MRI data acquisition technology are starting to yield images that show anatomical features of the hippocampal formation at an unprecedented level of detail, providing the basis for hippocampal subfield measurement. However, a fundamental bottleneck in MRI studies of the hippoc...

Full description

Bibliographic Details
Main Authors: Van Leemput, Koen (Contributor), Bakkour, Akram (Author), Benner, Thomas (Author), Wiggins, Graham (Author), Wald, Lawrence (Contributor), Augustinack, Jean (Author), Dickerson, Bradford C. (Author), Golland, Polina (Contributor), Fischl, Bruce (Contributor)
Other Authors: Harvard University- (Contributor), Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Wiley-Blackwell Pubishers, 2012-07-12T15:25:40Z.
Subjects:
Online Access:Get fulltext
LEADER 03495 am a22004813u 4500
001 71591
042 |a dc 
100 1 0 |a Van Leemput, Koen  |e author 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Golland, Polina  |e contributor 
100 1 0 |a Van Leemput, Koen  |e contributor 
100 1 0 |a Wald, Lawrence  |e contributor 
100 1 0 |a Fischl, Bruce  |e contributor 
100 1 0 |a Golland, Polina  |e contributor 
700 1 0 |a Bakkour, Akram  |e author 
700 1 0 |a Benner, Thomas  |e author 
700 1 0 |a Wiggins, Graham  |e author 
700 1 0 |a Wald, Lawrence  |e author 
700 1 0 |a Augustinack, Jean  |e author 
700 1 0 |a Dickerson, Bradford C.  |e author 
700 1 0 |a Golland, Polina  |e author 
700 1 0 |a Fischl, Bruce  |e author 
245 0 0 |a Automated Segmentation of Hippocampal Subfields From Ultra-High Resolution In Vivo MRI 
260 |b Wiley-Blackwell Pubishers,   |c 2012-07-12T15:25:40Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/71591 
520 |a Recent developments in MRI data acquisition technology are starting to yield images that show anatomical features of the hippocampal formation at an unprecedented level of detail, providing the basis for hippocampal subfield measurement. However, a fundamental bottleneck in MRI studies of the hippocampus at the subfield level is that they currently depend on manual segmentation, a laborious process that severely limits the amount of data that can be analyzed. In this article, we present a computational method for segmenting the hippocampal subfields in ultra-high resolution MRI data in a fully automated fashion. Using Bayesian inference, we use a statistical model of image formation around the hippocampal area to obtain automated segmentations. We validate the proposed technique by comparing its segmentations to corresponding manual delineations in ultra-high resolution MRI scans of 10 individuals, and show that automated volume measurements of the larger subfields correlate well with manual volume estimates. Unlike manual segmentations, our automated technique is fully reproducible, and fast enough to enable routine analysis of the hippocampal subfields in large imaging studies. 
520 |a National Institutes of Health (U.S.) (NIH NCRR; Grant number: P41-RR14075) 
520 |a National Institutes of Health (U.S.) (Grant R01 RR16594-01A1) 
520 |a National Institutes of Health (U.S.) (Grant NAC P41-RR13218) 
520 |a Biomedical Informatics Research Network (BIRN002) 
520 |a Biomedical Informatics Research Network (U24 RR021382) 
520 |a National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB001550) 
520 |a National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758) 
520 |a National Institute of Biomedical Imaging and Bioengineering (U.S.) (NAMIC U54-EB005149) 
520 |a National Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01) 
520 |a National Institute of Neurological Disorders and Stroke (U.S.) (R01 NS051826) 
520 |a Mental Illness and Neuroscience Discovery (MIND) Institute 
520 |a Ellison Medical Foundation (Autism & Dyslexia Project) 
546 |a en_US 
655 7 |a Article 
773 |t Hippocampus