Double field theory of type II strings

We use double field theory to give a unified description of the low energy limits of type IIA and type IIB superstrings. The Ramond-Ramond potentials fit into spinor representations of the duality group O(D, D) and field-strengths are obtained by acting with the Dirac operator on the potentials. The...

Full description

Bibliographic Details
Main Authors: Hohm, Olaf (Contributor), Kwak, Seung Ki (Contributor), Zwiebach, Barton (Contributor)
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Spring Berlin/Heidelberg, 2012-06-04T17:35:55Z.
Subjects:
Online Access:Get fulltext
LEADER 01652 am a22002533u 4500
001 71014
042 |a dc 
100 1 0 |a Hohm, Olaf  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Theoretical Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Zwiebach, Barton  |e contributor 
100 1 0 |a Hohm, Olaf  |e contributor 
100 1 0 |a Kwak, Seung Ki  |e contributor 
100 1 0 |a Zwiebach, Barton  |e contributor 
700 1 0 |a Kwak, Seung Ki  |e author 
700 1 0 |a Zwiebach, Barton  |e author 
245 0 0 |a Double field theory of type II strings 
260 |b Spring Berlin/Heidelberg,   |c 2012-06-04T17:35:55Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/71014 
520 |a We use double field theory to give a unified description of the low energy limits of type IIA and type IIB superstrings. The Ramond-Ramond potentials fit into spinor representations of the duality group O(D, D) and field-strengths are obtained by acting with the Dirac operator on the potentials. The action, supplemented by a Spin+ (D, D)-covariant self-duality condition on field strengths, reduces to the IIA and IIB theories in different frames. As usual, the NS-NS gravitational variables are described through the generalized metric. Our work suggests that the fundamental gravitational variable is a hermitian element of the group Spin(D, D) whose natural projection to O(D, D) gives the generalized metric. 
520 |a United States. Dept. of Energy (cooperative research agreement DE-FG02-05ER41360)) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of High Energy Physics