Curves over every global field violating the local-global principle

There is an algorithm that takes as input a global field k and produces a curve over k violating the local-global principle. Also, given a global field k and a nonnegative integer n, one can effectively construct a curve X over k such that #X(k) = n.

Bibliographic Details
Main Author: Poonen, Bjorn (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2012-04-27T21:18:32Z.
Subjects:
Online Access:Get fulltext
LEADER 00920 am a22001933u 4500
001 70470
042 |a dc 
100 1 0 |a Poonen, Bjorn  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Poonen, Bjorn  |e contributor 
100 1 0 |a Poonen, Bjorn  |e contributor 
245 0 0 |a Curves over every global field violating the local-global principle 
260 |b Springer-Verlag,   |c 2012-04-27T21:18:32Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/70470 
520 |a There is an algorithm that takes as input a global field k and produces a curve over k violating the local-global principle. Also, given a global field k and a nonnegative integer n, one can effectively construct a curve X over k such that #X(k) = n. 
520 |a National Science Foundation (U.S.) (grant DMS-0841321) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Mathematical Sciences