A differential autoregressive modeling approach within a point process framework for non-stationary heartbeat intervals analysis

Modeling heartbeat variability remains a challenging signal-processing goal in the presence of highly non-stationary cardiovascular control dynamics. We propose a novel differential autoregressive modeling approach within a point process probability framework for analyzing R-R interval and blood pre...

Full description

Bibliographic Details
Main Authors: Chen, Zhe (Contributor), Purdon, Patrick Lee (Contributor), Brown, Emery N. (Contributor), Barbieri, Riccardo (Contributor)
Other Authors: Harvard University- (Contributor), Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2012-04-20T15:06:56Z.
Subjects:
Online Access:Get fulltext
LEADER 02267 am a22003253u 4500
001 70072
042 |a dc 
100 1 0 |a Chen, Zhe  |e author 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences  |e contributor 
100 1 0 |a Brown, Emery N.  |e contributor 
100 1 0 |a Brown, Emery N.  |e contributor 
100 1 0 |a Chen, Zhe  |e contributor 
100 1 0 |a Purdon, Patrick Lee  |e contributor 
100 1 0 |a Barbieri, Riccardo  |e contributor 
700 1 0 |a Purdon, Patrick Lee  |e author 
700 1 0 |a Brown, Emery N.  |e author 
700 1 0 |a Barbieri, Riccardo  |e author 
245 0 0 |a A differential autoregressive modeling approach within a point process framework for non-stationary heartbeat intervals analysis 
260 |b Institute of Electrical and Electronics Engineers,   |c 2012-04-20T15:06:56Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/70072 
520 |a Modeling heartbeat variability remains a challenging signal-processing goal in the presence of highly non-stationary cardiovascular control dynamics. We propose a novel differential autoregressive modeling approach within a point process probability framework for analyzing R-R interval and blood pressure variations. We apply the proposed model to both synthetic and experimental heartbeat intervals observed in time-varying conditions. The model is found to be extremely effective in tracking non-stationary heartbeat dynamics, as evidenced by the excellent goodness-of-fit performance. Results further demonstrate the ability of the method to appropriately quantify the non-stationary evolution of baroreflex sensitivity in changing physiological and pharmacological conditions. 
520 |a National Institutes of Health (U.S.) (Grant R01-HL084502) 
520 |a National Institutes of Health (U.S.) (Grant K25-NS05758) 
520 |a National Institutes of Health (U.S.) (Grant DP2-OD006454) 
520 |a National Institutes of Health (U.S.) (Grant DP1-OD003646) 
520 |a National Institutes of Health (U.S.) (Grant CRC UL1 RR025758) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 32rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2010