Traces on finite W-algebras

We compute the space of Poisson traces on a classical W-algebra, i.e., linear functionals invariant under Hamiltonian derivations. Modulo any central character, this space identifies with the top cohomology of the corresponding Springer fiber. As a consequence, we deduce that the zeroth Hochschild h...

Full description

Bibliographic Details
Main Authors: Etingof, Pavel I. (Contributor), Schedler, Travis (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2012-04-11T21:24:46Z.
Subjects:
Online Access:Get fulltext
LEADER 01670 am a22002293u 4500
001 69989
042 |a dc 
100 1 0 |a Etingof, Pavel I.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
100 1 0 |a Schedler, Travis  |e contributor 
700 1 0 |a Schedler, Travis  |e author 
245 0 0 |a Traces on finite W-algebras 
260 |b Springer-Verlag,   |c 2012-04-11T21:24:46Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/69989 
520 |a We compute the space of Poisson traces on a classical W-algebra, i.e., linear functionals invariant under Hamiltonian derivations. Modulo any central character, this space identifies with the top cohomology of the corresponding Springer fiber. As a consequence, we deduce that the zeroth Hochschild homology of the corresponding quantum W-algebra modulo a central character identifies with the top cohomology of the corresponding Springer fiber. This implies that the number of irreducible finite-dimensional representations of this algebra is bounded by the dimension of this top cohomology, which was established earlier by C. Dodd using reduction to positive characteristic. Finally, we prove that the entire cohomology of the Springer fiber identifies with the so-called Poisson-de Rham homology (defined previously by the authors) of the centrally reduced classical W-algebra. 
520 |a National Science Foundation (U.S.) (grant DMS-0504847) 
520 |a National Science Foundation (U.S.) (grant DMS-0900233) 
546 |a en_US 
655 7 |a Article 
773 |t Transformation Groups