Atomic-scale design of radiation-tolerant nanocomposites

Recent work indicates that materials with nanoscale architectures, such as nanolayered Cu-Nb composites and nanoscale oxide dispersion-strengthened steels, are both thermally stable and offer improved performance under irradiation. Current understanding of the atomic-level response of such materials...

Full description

Bibliographic Details
Main Authors: Demkowicz, Michael J. (Contributor), Bellon, P. (Author), Wirth, B. D. (Author)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: Cambridge University Press, 2012-02-13T18:12:10Z.
Subjects:
Online Access:Get fulltext
LEADER 01502 am a22002053u 4500
001 69095
042 |a dc 
100 1 0 |a Demkowicz, Michael J.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Demkowicz, Michael J.  |e contributor 
100 1 0 |a Demkowicz, Michael J.  |e contributor 
700 1 0 |a Bellon, P.  |e author 
700 1 0 |a Wirth, B. D.  |e author 
245 0 0 |a Atomic-scale design of radiation-tolerant nanocomposites 
260 |b Cambridge University Press,   |c 2012-02-13T18:12:10Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/69095 
520 |a Recent work indicates that materials with nanoscale architectures, such as nanolayered Cu-Nb composites and nanoscale oxide dispersion-strengthened steels, are both thermally stable and offer improved performance under irradiation. Current understanding of the atomic-level response of such materials to radiation yields insights into how controlling composition, morphology, and interface-defect interactions may further enable atomic-scale design of radiation-tolerant nanostructured composite materials. With greater understanding of irradiation-assisted degradation mechanisms, this bottom-up design approach may pave the way for creating the extreme environment-tolerant structural materials needed to meet the world's clean energy demand by expanding use of advanced fission and future fusion power. 
546 |a en_US 
655 7 |a Article 
773 |t MRS Bulletin