Experimental Realization of Decoherence-Free Subspace in Neutron Interferometry

A decoherence-free subspace (DFS) is an important class of quantum-error-correcting (QEC) codes that have been proposed for fault-tolerant quantum computation. The applications of QEC techniques, however, are not limited to quantum-information processing (QIP). Here we demonstrate how QEC codes may...

Full description

Bibliographic Details
Main Authors: Huber, Michael G. (Author), Arif, M. (Author), Pushin, D. A. (Contributor), Cory, David G. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor)
Format: Article
Language:English
Published: American Physical Society (APS), 2012-02-09T17:13:38Z.
Subjects:
Online Access:Get fulltext
LEADER 01877 am a22002653u 4500
001 69062
042 |a dc 
100 1 0 |a Huber, Michael G.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
100 1 0 |a Cory, David G.  |e contributor 
100 1 0 |a Pushin, D. A.  |e contributor 
100 1 0 |a Cory, David G.  |e contributor 
700 1 0 |a Arif, M.  |e author 
700 1 0 |a Pushin, D. A.  |e author 
700 1 0 |a Cory, David G.  |e author 
245 0 0 |a Experimental Realization of Decoherence-Free Subspace in Neutron Interferometry 
260 |b American Physical Society (APS),   |c 2012-02-09T17:13:38Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/69062 
520 |a A decoherence-free subspace (DFS) is an important class of quantum-error-correcting (QEC) codes that have been proposed for fault-tolerant quantum computation. The applications of QEC techniques, however, are not limited to quantum-information processing (QIP). Here we demonstrate how QEC codes may be used to improve experimental designs of quantum devices to achieve noise suppression. In particular, neutron interferometry is used as a test bed to show the potential for adding quantum error correction to quantum measurements. We built a five-blade neutron interferometer that incorporates both a standard Mach-Zender configuration and a configuration based on a DFS. Experiments verify that the DFS interferometer is protected against low-frequency mechanical vibrations. We anticipate these improvements will increase the range of applications for matter-wave interferometry. 
520 |a United States. National Security Agency 
520 |a United States. Army Research Office (Contract No. W911NF-05-1-0469) 
520 |a Canada Excellence Research Chairs Program 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review Letters