Multistage nanoparticle delivery system for deep penetration into tumor

Current Food and Drug Administration-approved cancer nanotherapeutics, which passively accumulate around leaky regions of the tumor vasculature because of an enhanced permeation and retention (EPR) effect, have provided only modest survival benefits. This suboptimal outcome is likely due to physiolo...

Full description

Bibliographic Details
Main Authors: Wong, Cliff (Contributor), Stylianopoulos, Triantafyllos (Author), Cui, Jian (Contributor), Martin, John Daniel (Author), Chauhan, Vikash P. (Author), Jiang, Wen (Author), Popovic, Zoran (Contributor), Jain, Rakesh K. (Author), Bawendi, Moungi G. (Contributor), Fukumura, Dai (Author)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: National Academy of Sciences (U.S.), 2011-08-15T19:06:56Z.
Subjects:
Online Access:Get fulltext
LEADER 03829 am a22004573u 4500
001 65152
042 |a dc 
100 1 0 |a Wong, Cliff  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Bawendi, Moungi G.  |e contributor 
100 1 0 |a Wong, Cliff  |e contributor 
100 1 0 |a Cui, Jian  |e contributor 
100 1 0 |a Popovic, Zoran  |e contributor 
100 1 0 |a Bawendi, Moungi G.  |e contributor 
700 1 0 |a Stylianopoulos, Triantafyllos  |e author 
700 1 0 |a Cui, Jian  |e author 
700 1 0 |a Martin, John Daniel  |e author 
700 1 0 |a Chauhan, Vikash P.  |e author 
700 1 0 |a Jiang, Wen  |e author 
700 1 0 |a Popovic, Zoran  |e author 
700 1 0 |a Jain, Rakesh K.  |e author 
700 1 0 |a Bawendi, Moungi G.  |e author 
700 1 0 |a Fukumura, Dai  |e author 
245 0 0 |a Multistage nanoparticle delivery system for deep penetration into tumor 
260 |b National Academy of Sciences (U.S.),   |c 2011-08-15T19:06:56Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/65152 
520 |a Current Food and Drug Administration-approved cancer nanotherapeutics, which passively accumulate around leaky regions of the tumor vasculature because of an enhanced permeation and retention (EPR) effect, have provided only modest survival benefits. This suboptimal outcome is likely due to physiological barriers that hinder delivery of the nanotherapeutics throughout the tumor. Many of these nanotherapeutics are ≈100 nm in diameter and exhibit enhanced accumulation around the leaky regions of the tumor vasculature, but their large size hinders penetration into the dense collagen matrix. Therefore, we propose a multistage system in which 100-nm nanoparticles "shrink" to 10-nm nanoparticles after they extravasate from leaky regions of the tumor vasculature and are exposed to the tumor microenvironment. The shrunken nanoparticles can more readily diffuse throughout the tumor's interstitial space. This size change is triggered by proteases that are highly expressed in the tumor microenvironment such as MMP-2, which degrade the cores of 100-nm gelatin nanoparticles, releasing smaller 10-nm nanoparticles from their surface. We used quantum dots (QD) as a model system for the 10-nm particles because their fluorescence can be used to demonstrate the validity of our approach. In vitro MMP-2 activation of the multistage nanoparticles revealed that the size change was efficient and effective in the enhancement of diffusive transport. In vivo circulation half-life and intratumoral diffusion measurements indicate that our multistage nanoparticles exhibited both the long circulation half-life necessary for the EPR effect and the deep tumor penetration required for delivery into the tumor's dense collagen matrix. 
520 |a National Cancer Institute (U.S.) (R01-CA126642) 
520 |a National Cancer Institute (U.S.) (R01-CA085140) 
520 |a National Cancer Institute (U.S.) (R01-CA115767) 
520 |a National Cancer Institute (U.S.) (P01-CA080124) 
520 |a National Cancer Institute (U.S.) (R01-CA096915) 
520 |a MIT-Harvard Center for Cancer Nanotechnology Excellence (Grant 1U54-CA119349) 
520 |a Massachusetts Institute of Technology. Dept. of Chemistry Instrumentation Facility (Grant CHE-980806 ) 
520 |a Massachusetts Institute of Technology. Dept. of Chemistry Instrumentation Facility (grant DBI-9729592) 
520 |a MIT/Army Institute for Soldier Nanotechnologies (Grant W911NF-07-D-0004 ) 
520 |a Susan G. Komen Breast Cancer Foundation (Grant KG091281) 
520 |a United States. Dept. of Defense (Breast Cancer Research Program Innovator Award W81XWH-10-1-0016) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the National Academy of Sciences of the United States of America