Modes of log gravity

The physical modes of a recently proposed D-dimensional ''critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All ''log mode'' solutions, which we categorize as ''spin-2'' or ''Proca'', aris...

Full description

Bibliographic Details
Main Authors: Bergshoeff, Eric A. (Author), Hohm, Olaf (Contributor), Rossell, Jan (Author), Townsend, Paul K. (Author)
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2011-07-28T14:48:34Z.
Subjects:
Online Access:Get fulltext
LEADER 01442 am a22002413u 4500
001 64962
042 |a dc 
100 1 0 |a Bergshoeff, Eric A.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Center for Theoretical Physics  |e contributor 
100 1 0 |a Hohm, Olaf  |e contributor 
100 1 0 |a Hohm, Olaf  |e contributor 
700 1 0 |a Hohm, Olaf  |e author 
700 1 0 |a Rossell, Jan  |e author 
700 1 0 |a Townsend, Paul K.  |e author 
245 0 0 |a Modes of log gravity 
260 |b American Physical Society,   |c 2011-07-28T14:48:34Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/64962 
520 |a The physical modes of a recently proposed D-dimensional ''critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All ''log mode'' solutions, which we categorize as ''spin-2'' or ''Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Einstein tensor of a spin-2 log mode is itself a 'nongauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory. 
520 |a Deutsche Forschungsgemeinschaft (DFG) 
520 |a United States. Dept. of Energy (cooperative research agreement DE-FG02-05ER41360) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review D