A natural-norm Successive Constraint Method for inf-sup lower bounds

We present a new approach for the construction of lower bounds for the inf-sup stability constants required in a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations. We combine the "linearized" inf-sup statement of the natural-n...

Full description

Bibliographic Details
Main Authors: Huynh, Dinh Bao Phuong (Author), Knezevic, David (Contributor), Chen, Y. (Author), Hesthaven, J. S. (Author), Patera, Anthony T. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Elsevier ScienceDirect, 2011-06-17T15:19:13Z.
Subjects:
Online Access:Get fulltext
LEADER 02106 am a22002533u 4500
001 64476
042 |a dc 
100 1 0 |a Huynh, Dinh Bao Phuong  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Patera, Anthony T.  |e contributor 
100 1 0 |a Knezevic, David  |e contributor 
100 1 0 |a Patera, Anthony T.  |e contributor 
700 1 0 |a Knezevic, David  |e author 
700 1 0 |a Chen, Y.  |e author 
700 1 0 |a Hesthaven, J. S.  |e author 
700 1 0 |a Patera, Anthony T.  |e author 
245 0 0 |a A natural-norm Successive Constraint Method for inf-sup lower bounds 
260 |b Elsevier ScienceDirect,   |c 2011-06-17T15:19:13Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/64476 
520 |a We present a new approach for the construction of lower bounds for the inf-sup stability constants required in a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations. We combine the "linearized" inf-sup statement of the natural-norm approach with the approximation procedure of the Successive Constraint Method (SCM): the former (natural-norm) provides an economical parameter expansion and local concavity in parameter-a small(er) optimization problem which enjoys intrinsic lower bound properties; the latter (SCM) provides a systematic optimization framework-a Linear Program (LP) relaxation which readily incorporates continuity and stability constraints. The natural-norm SCM requires a parameter domain decomposition: we propose a greedy algorithm for selection of the SCM control points as well as adaptive construction of the optimal subdomains. The efficacy of the natural-norm SCM is illustrated through numerical results for two types of non-coercive problems: the Helmholtz equation (for acoustics, elasticity, and electromagnetics), and the convection-diffusion equation. 
520 |a United States. Air Force Office of Scientific Research (Grant No. FA 9550-07-1-0425) 
546 |a en_US 
655 7 |a Article 
773 |t Computer Methods in Applied Mechanics and Engineering