The Small Quantum Group as a Quantum Double

We prove that the quantum double of the quasi-Hopf algebra View the MathML source of We prove that the quantum double of the quasi-Hopf algebra Aq(g) of dimension ndimg attached in [P. Etingof, S. Gelaki, On radically graded finite-dimensional quasi-Hopf algebras, Mosc. Math. J. 5 (2) (2005) 371-378...

Full description

Bibliographic Details
Main Authors: Etingof, Pavel I. (Contributor), Gelaki, Shlomo (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier, 2011-06-09T12:38:10Z.
Subjects:
Online Access:Get fulltext
LEADER 01354 am a22002293u 4500
001 63597
042 |a dc 
100 1 0 |a Etingof, Pavel I.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
700 1 0 |a Gelaki, Shlomo  |e author 
245 0 0 |a The Small Quantum Group as a Quantum Double 
260 |b Elsevier,   |c 2011-06-09T12:38:10Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/63597 
520 |a We prove that the quantum double of the quasi-Hopf algebra View the MathML source of We prove that the quantum double of the quasi-Hopf algebra Aq(g) of dimension ndimg attached in [P. Etingof, S. Gelaki, On radically graded finite-dimensional quasi-Hopf algebras, Mosc. Math. J. 5 (2) (2005) 371-378] to a simple complex Lie algebra g and a primitive root of unity q of order n2 is equivalent to Lusztig's small quantum group uq(g) (under some conditions on n). We also give a conceptual construction of Aq(g) using the notion of deequivariantization of tensor categories. 
520 |a National Science Foundation (U.S.) (Grant No. DMS-0504847) 
520 |a Israel Science Foundation (grant No. 125/05) 
520 |a BSF (grant No. 2002040) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Algebra