A Uniform Proof of the Macdonald-Mehta-Opdam Identity for Finite Coxeter Groups

In this note we give a new proof of the Macdonald-Mehta-Opdam integral identity for finite Coxeter groups (in the equal parameter case). This identity was conjectured by Macdonald and proved by Opdam in \cite{O1,O2} using the theory of multivariable Bessel functions, but in non-crystallographic case...

Full description

Bibliographic Details
Main Author: Etingof, Pavel I. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: International Press, 2011-05-31T19:22:16Z.
Subjects:
Online Access:Get fulltext
LEADER 01448 am a22001933u 4500
001 63151
042 |a dc 
100 1 0 |a Etingof, Pavel I.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
100 1 0 |a Etingof, Pavel I.  |e contributor 
245 0 0 |a A Uniform Proof of the Macdonald-Mehta-Opdam Identity for Finite Coxeter Groups 
260 |b International Press,   |c 2011-05-31T19:22:16Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/63151 
520 |a In this note we give a new proof of the Macdonald-Mehta-Opdam integral identity for finite Coxeter groups (in the equal parameter case). This identity was conjectured by Macdonald and proved by Opdam in \cite{O1,O2} using the theory of multivariable Bessel functions, but in non-crystallographic cases the proof relied on a computer calculation by F. Garvan. Our proof is somewhat more elementary (in particular, it does not use multivariable Bessel functions), and uniform (does not refer to the classification of finite Coxeter groups). \footnote{We expect that this proof can be generalized to the case of non-equal parameters. Indeed, many of the steps of our proof, including key Proposition \ref{l2}, generalize without effort to this setting. 
520 |a National Science Foundation (U.S.) (NSF grant DMS-0504847) 
546 |a en_US 
655 7 |a Article 
773 |t Mathematical Research Letters