|
|
|
|
LEADER |
01120 am a22002653u 4500 |
001 |
63105 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Birkar, Caucher
|e author
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Mathematics
|e contributor
|
100 |
1 |
0 |
|a McKernan, James
|e contributor
|
100 |
1 |
0 |
|a McKernan, James
|e contributor
|
700 |
1 |
0 |
|a Cascini, Paolo
|e author
|
700 |
1 |
0 |
|a Hacon, Christopher D.
|e author
|
700 |
1 |
0 |
|a McKernan, James
|e author
|
245 |
0 |
0 |
|a Existence of Minimal Models for Varieties of Log General Type
|
260 |
|
|
|b American Mathematical Society,
|c 2011-05-25T14:29:22Z.
|
856 |
|
|
|z Get fulltext
|u http://hdl.handle.net/1721.1/63105
|
520 |
|
|
|a We prove that the canonical ring of a smooth projective variety is finitely generated.
|
520 |
|
|
|a National Science Foundation (U.S.) (Grant No. 0801258)
|
520 |
|
|
|a National Science Foundation (U.S.) (Grant 0456363)
|
520 |
|
|
|a United States. National Security Agency (H98230-06-1-0059)
|
520 |
|
|
|a National Science Foundation (U.S.) (Grant No. 0701101)
|
546 |
|
|
|a en_US
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t Journal of the American Mathematical Society
|