Existence of Minimal Models for Varieties of Log General Type

We prove that the canonical ring of a smooth projective variety is finitely generated.

Bibliographic Details
Main Authors: Birkar, Caucher (Author), Cascini, Paolo (Author), Hacon, Christopher D. (Author), McKernan, James (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: American Mathematical Society, 2011-05-25T14:29:22Z.
Subjects:
Online Access:Get fulltext
LEADER 01120 am a22002653u 4500
001 63105
042 |a dc 
100 1 0 |a Birkar, Caucher  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a McKernan, James  |e contributor 
100 1 0 |a McKernan, James  |e contributor 
700 1 0 |a Cascini, Paolo  |e author 
700 1 0 |a Hacon, Christopher D.  |e author 
700 1 0 |a McKernan, James  |e author 
245 0 0 |a Existence of Minimal Models for Varieties of Log General Type 
260 |b American Mathematical Society,   |c 2011-05-25T14:29:22Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/63105 
520 |a We prove that the canonical ring of a smooth projective variety is finitely generated. 
520 |a National Science Foundation (U.S.) (Grant No. 0801258) 
520 |a National Science Foundation (U.S.) (Grant 0456363) 
520 |a United States. National Security Agency (H98230-06-1-0059) 
520 |a National Science Foundation (U.S.) (Grant No. 0701101) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of the American Mathematical Society