Swan conductors for p-adic differential modules, II: Global variation

Using a local construction from a previous paper, we exhibit a numerical invariant, the differential Swan conductor, for an isocrystal on a variety over a perfect field of positive characteristic overconvergent along a boundary divisor; this leads to an analogous construction for certain p-adic and...

Full description

Bibliographic Details
Main Author: Kedlaya, Kiran S. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Cambridge University Press, 2011-05-18T18:22:12Z.
Subjects:
Online Access:Get fulltext
LEADER 01437 am a22002413u 4500
001 62832
042 |a dc 
100 1 0 |a Kedlaya, Kiran S.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Kedlaya, Kiran S.  |e contributor 
100 1 0 |a Kedlaya, Kiran S.  |e contributor 
245 0 0 |a Swan conductors for p-adic differential modules, II: Global variation 
260 |b Cambridge University Press,   |c 2011-05-18T18:22:12Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/62832 
520 |a Using a local construction from a previous paper, we exhibit a numerical invariant, the differential Swan conductor, for an isocrystal on a variety over a perfect field of positive characteristic overconvergent along a boundary divisor; this leads to an analogous construction for certain p-adic and l-adic representations of the étale fundamental group of a variety. We then demonstrate some variational properties of this definition for overconvergent isocrystals, paying special attention to the case of surfaces. 
520 |a Clay Mathematics Institute 
520 |a National Science foundation (U.S.) (Grant DMS-0400727) 
520 |a National Science foundation (U.S.) (CAREER grant DMS-0545904) 
520 |a Alfred P. Sloan Foundation 
520 |a NEC Research Support Fund 
546 |a en_US 
655 7 |a Article 
773 |t Journal of the Institute of Mathematics of Jussieu