Quantifying morphology changes in time series data with skew

This paper examines strategies to quantify differences in the morphology of time series while accounting for time skew in the observed data. We adapt four measures originally designed for signal shape comparison: Dynamic Time-Warping (DTW), Earth Mover's Distance (EMD), Frochet Distance (FD), a...

Full description

Bibliographic Details
Main Authors: Sung, Phil (Contributor), Syed, Zeeshan (Contributor), Guttag, John V. (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2011-04-06T20:47:21Z.
Subjects:
Online Access:Get fulltext
LEADER 01563 am a22002413u 4500
001 62155
042 |a dc 
100 1 0 |a Sung, Phil  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Guttag, John V.  |e contributor 
100 1 0 |a Sung, Phil  |e contributor 
100 1 0 |a Syed, Zeeshan  |e contributor 
100 1 0 |a Guttag, John V.  |e contributor 
700 1 0 |a Syed, Zeeshan  |e author 
700 1 0 |a Guttag, John V.  |e author 
245 0 0 |a Quantifying morphology changes in time series data with skew 
260 |b Institute of Electrical and Electronics Engineers,   |c 2011-04-06T20:47:21Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/62155 
520 |a This paper examines strategies to quantify differences in the morphology of time series while accounting for time skew in the observed data. We adapt four measures originally designed for signal shape comparison: Dynamic Time-Warping (DTW), Earth Mover's Distance (EMD), Frochet Distance (FD), and Hausdorff Distance (HD). These morphology difference metrics on time series are compared in discriminative power and noise resistance on ECG signals as well as on a synthetic dataset. We use data from our experiments to shed light on the relative strengths of the methods. 
546 |a en_US 
655 7 |a Article 
773 |t ICASSP (IEEE International Conference on Acoustics, Speech and Signal Processing)