Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds

We compare the accuracy of conventional semilocal density functional theory (DFT), the DFT+U method, and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for structural parameters, redox reaction energies, and formation energies of transition metal compounds. Conventional DFT functionals signif...

Full description

Bibliographic Details
Main Authors: Ceder, Gerbrand (Contributor), Ong, Shyue Ping (Contributor), Chan, Maria K. (Contributor), Armiento, Rickard R. (Contributor), Chevrier, Vincent L. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2011-02-18T19:14:31Z.
Subjects:
Online Access:Get fulltext
LEADER 02742 am a22003133u 4500
001 60988
042 |a dc 
100 1 0 |a Ceder, Gerbrand  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Ceder, Gerbrand  |e contributor 
100 1 0 |a Ceder, Gerbrand  |e contributor 
100 1 0 |a Ong, Shyue Ping  |e contributor 
100 1 0 |a Chan, Maria K.  |e contributor 
100 1 0 |a Armiento, Rickard R.  |e contributor 
100 1 0 |a Chevrier, Vincent L.  |e contributor 
700 1 0 |a Ong, Shyue Ping  |e author 
700 1 0 |a Chan, Maria K.  |e author 
700 1 0 |a Armiento, Rickard R.  |e author 
700 1 0 |a Chevrier, Vincent L.  |e author 
245 0 0 |a Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds 
260 |b American Physical Society,   |c 2011-02-18T19:14:31Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/60988 
520 |a We compare the accuracy of conventional semilocal density functional theory (DFT), the DFT+U method, and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for structural parameters, redox reaction energies, and formation energies of transition metal compounds. Conventional DFT functionals significantly underestimate redox potentials for these compounds. Zhou et al. [Phys. Rev. B 70, 235121 (2004)] addressed this issue with DFT+U and a linear-response scheme for calculating U values. We show that the Li intercalation potentials of prominent Li-ion intercalation battery materials, such as the layered LixMO2 (M=Co and Ni), LixTiS2; olivine LixMPO4 (M=Mn, Fe, Co, and Ni); and spinel-like LixMn2O4, LixTi2O4, are also well reproduced by HSE06, due to the self-interaction error correction from the partial inclusion of Hartree-Fock exchange. For formation energies, HSE06 performs well for transition metal compounds, which typically are not well reproduced by conventional DFT functionals but does not significantly improve the results of nontransition metal oxides. Hence, we find that hybrid functionals provide a good alternative to DFT+U for transition metal applications when the large extra computational effort is compensated by the benefits of (i) avoiding species-specific adjustable parameters and (ii) a more universal treatment of the self-interaction error that is not exclusive to specific atomic orbital projections on selected ions. 
520 |a United States. Dept. of Energy (Contract No. DE-FG02-96ER45571) 
520 |a Massachusetts Institute of Technology. Center for Materials Science and Engineering (Grant No. DMR-819762) 
520 |a Teragrid (Firm) (Grant No. TG-DMR970008S) 
546 |a en_US 
655 7 |a Article 
773 |t Physical Review B